课程简介
推荐系统主要分两个环节:召回和排序。
这两个阶段都离不开用户画像的支持,而用户画像又是在内容画像的基础上不断累积用户行为而来,故,首先需要有内容画像,构建文本物品的内容画像需要 nlp 技术的支持,存储内容和用户互相依赖常用数据库以及贝叶斯平滑、威尔逊置信区间等技术。
学习本项目后,你将了解到如何使用 nlp 技术抽取物品信息形成的内容标签,依托 mysql、Redis 等数据库存储内容画像,并基于内容画像和用户行为形成用户画像,再此基础之上建立基于画像的推荐系统。
推荐系统主要分两个环节:召回和排序。
这两个阶段都离不开用户画像的支持,而用户画像又是在内容画像的基础上不断累积用户行为而来,故,首先需要有内容画像,构建文本物品的内容画像需要 nlp 技术的支持,存储内容和用户互相依赖常用数据库以及贝叶斯平滑、威尔逊置信区间等技术。
学习本项目后,你将了解到如何使用 nlp 技术抽取物品信息形成的内容标签,依托 mysql、Redis 等数据库存储内容画像,并基于内容画像和用户行为形成用户画像,再此基础之上建立基于画像的推荐系统。
最新评论